
LLNL-CONF-687015

Evaluating the Feasibility of
Storage Class Memory as Main
Memory

G. S. Lloyd, M. B. Gokhale

March 29, 2016

MEMSYS 2016
Washington DC, DC, United States
October 3, 2016 through October 6, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Evaluating the feasibility of storage class memory
as main memory

Scott Lloyd
Lawrence Livermore National Laboratory,

Livermore, CA
lloyd23@llnl.gov

Maya Gokhale
Lawrence Livermore National Laboratory,

Livermore, CA
gokhale2@llnl.gov

ABSTRACT
Storage class memory offers the prospect of large capacity
persistent memory with DRAM-like access latency. In this
work, we evaluate the performance of a small set of bench-
marks using SCM as main memory. We use an FPGA emu-
lator to model a range of memory latencies spanning DRAM
to latency projected for SCM and beyond. Our work high-
lights the performance impact of higher latency and iden-
tifies conditions by which SCM can effectively be used as
main memory.

CCS Concepts
•Computing methodologies → Modeling and simu-
lation; •Computer systems organization → Architec-
tures; •Hardware → Analysis and design of emerging de-
vices and systems; Memory and dense storage;

Keywords
accelerator; data intensive; emulator; energy; memory band-
width; performance; persistent memory; processing in mem-
ory; storage class memory

1. INTRODUCTION
After many decades of research, persistent memory with

DRAM-like access width and latency is appearing in the
commercial market. Such persistent memory has been named
Storage Class Memory (SCM) to recognize its dual role as
a first level storage tier and as a large capacity main mem-
ory. There are multiple SCM technologies such as Phase
Change Memory, STT-MRAM, and resistive RAMs. The
announcement of Intel/Micron’s 3D XPoint [1] once again
renews interest in the prospect of large (tens of TB) storage
class persistent memory local to a compute server.

Figure 1, adapted from [10], shows the memory/storage
latency spectrum, with SCM in the 200+ ns latency range.
Near DRAM has high bandwidth, low latency, and low ca-
pacity, followed by standard DDR3 DRAM. Far DRAM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’16, October 03-06, 2016, Alexandria, VA, USA
c© 2016 ACM. ISBN 978-1-4503-4305-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989118

is characterized by memories such as the Hybrid Memory
Cube, with very high bandwidth, moderate capacity, and
higher latency. The SCM tier has much higher capacity,
with latency in the range of 200–2000 ns. SSDs with NAND
Flash have multi-TB capacity but their block level access
and higher latency makes them unsuitable as SCM.

In this work, we investigate the use of SCM as a CPU’s
main memory. Such an architecture is emerging with SCM
as a likely candidate for an exascale node’s capacity memory.
At the exascale, power and cost considerations will require a
much reduced DRAM-to-processor ratio compared to petas-
cale machines, and system architects look to SCM to provide
the additional capacity at very low idle power and relatively
low latency. From the data analysis perspective, node lo-
cal large capacity memory is also highly desirable to store
larger partitions of massive data sets local to the server than
is possible in DRAM.

To estimate the performance of applications using such a
memory, we have measured performance of a small collec-
tion of benchmark kernels using an FPGA emulator. The
emulator is programmed to deliver memory access latency
projected for various memory technologies from very fast
DRAM to SCM. Our study sweeps a range of latencies for
each benchmark to assess to what extent storage class mem-
ory can serve directly as a main memory with existing cache
hierarchy. We vary the read/write latency ratio to study the
effects of longer write latency on application speed. Finally,
we incorporate application-specific caching in the memory
(active memory) to assess its benefit in SCM.

2. EVALUATION METHODOLOGY
Our evaluation uses an FPGA emulator (Figure 2) that

records memory transactions generated by software applica-
tions without affecting cache, memory traffic, or emulated
speed of the application. The emulator runs on a Xilinx
ZC706 development board. The board has a Zynq 7045
System-on-Chip with a dual ARM CPU plus programmable
logic, two on-board DDR3 memories, and other I/Os. The
ARM processor cores have separate L1 (32 KB, 4-way set-
associative instruction and data) and shared L2 (512 KB,
8-way set-associative) caches. A 1 GB 32-bit wide DDR3

Size (GB) 0.1-8 8–64 8–64 64–128
Latency (ns) 45 70 100 200+

Type Near DDR3 Far SCM

Figure 1: Memory/storage hierarchy

Programmable Logic (PL)

Processing System (PS)

Zynq SoC
Tr

ac
e

S
ub

sy
st

em

M
em

or
y

S
ub

sy
st

em

H
os

t S
ub

sy
st

em

Trace DRAM

SRAM

P
ro

gr
am

 D
R

A
M

AXI Performance

Monitor (APM)

ARM
Core

L2 Cache

ARM
Core

Custom
Cache

AXI Interconnect

Trace Capture
Device

Monitor

AXI Peripheral
Interconnect

L1 L1

Delay Delay

Delay

Figure 2: Zynq SoC with emulation framework

memory is used to hold application code and data.
The ARM cores can run at a clock frequency ranging from

1 MHz to 800 MHz. For these experiments, the ARM runs
at 128.6 MHz to achieve the emulated CPU frequency of
2.57 GHz. We have implemented programmable delay units
in the FPGA fabric to emulate different memory latencies.
The delay units are programmable at a range of 0–262 us in
0.25 ns increments. The emulated memory subsystem has
multiple memory channels and is capable of accepting up to
16 concurrent memory requests and multiple access widths.
We have made our emulator available as open source [2].

We additionally have added logic in the FPGA to emu-
late an application-specific cache. The Data Rearrangement
Engine (DRE) [6] performs in-memory gather/scatter and
strided DMA operations using an SRAM scratchpad. The
application-specific cache is shown as a dotted box in the
programming logic part of Figure 21. While the main CPU
accesses memory at cache line (32 byte) granularity, the
memory-side DRE can access memory at both cache line
and narrow 8 byte granularity. The custom cache is invoked
explicitly from the CPU and can operate concurrently with
the CPU.

Statistics collected by the emulator include emulated run
time and traced memory read and write requests of both
the serial program running on a single ARM core and the
in-memory cache, memory access counts, and total bytes
transferred. In previous work, we have merged multiple se-
rial traces to emulate a data parallel workload [7].

3. EXPERIMENTS
Using the emulator, we have evaluated how SCM char-

acteristics affect the performance of a small set of bench-

1and is not included in the open source software.

marks. We vary latency from near memory through several
projected SCM values, specifically, latencies of 45 ns, 70 ns,
100 ns, 200 ns, 400 ns, 800 ns, 2 us, 4 us, and 8 us (extending
beyond SCM tier). We approximate the effects of working
set size relative to processor cache size by running different
problem (and therefore dataset) sizes, thereby varying the
cache-to-memory (CM) ratio of the benchmark. As some
SCMs have slower write latency than read, the read/write
latency ratio is also varied, at ratios of 1:1, 1:2, 1:4, and 1:8.
Finally we introduce the application-specific cache that per-
forms custom DMA and gather/scatter operations and com-
municates blocks of reduced data to/from the main CPU.
All graphs show latency on the x-axis and runtime on the
y-axis, meaning lower is better.

Benchmarks are as follows:

• DGEMM, dense matrix multiply that is part of the
HPC Challenge benchmark suite [4]. DGEMM char-
acterizes compute-intensive, cache-friendly kernels.

• Random Access, to measure the rate of random inte-
ger updates. This “gups” benchmark, also part of the
HPC Challenge set, stresses the memory system with
random read-modify-write sequences.

• ImageDiff, an in-house benchmark that computes the
pixel-wise difference of two images, using 16X reduced
resolution (i.e. access every 16th pixel in each im-
age). This benchmark is modeled after image process-
ing tasks on high resolution imagery that sub-sample
and analyze the reduced size image.

• STREAM [9], the open source benchmark that “mea-
sures sustainable memory bandwidth (in MB/s) and
the corresponding computation rate for simple vector
kernels.” STREAM is included in the HPC Challenge
set.

• SparseMatVec, a sparse matrix multiply with a dense
vector, using an open source implementation [5].

• PageRank, in-house implementation of the popular al-
gorithm to weight importance of web pages.

• Breadth First Search (BFS), in-house implementation
of the first Graph500 benchmark [3].

• Kmer, an in-house benchmark for a key/value store.
The keys are k-length genome fragments and the values
are a list of genomes and their positions that contain
the k-length fragments. Two K/V store implementa-
tions are evaluated, a btree and a hash table.

3.1 Cache-to-memory (CM) ratio
The first experiment measures DGEMM elapsed time at

nine latency levels and seven CM ratios. The sizes of the ma-
trices were adjusted to adhere to the CM ratio. The curves
in Figure 3 showing the runtime profile of DGEMM indicate
that for latency up to 800 ns, the size of the working set can
be double the cache size with little impact on performance.
At CM ratios of 1:4 and higher, runtime increases linearly
with latency. This result suggests that dense matrix multi-
ply kernels for small matrices can tolerate the lower range
of SCM latencies. Large dense matrices in SCM can be de-
composed into blocks, e.g. machine-learning weight-matrix

0.001	

0.01	

0.1	

1	

10	

100	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

DGEMM	 R:W	 1:1	

C:M	 2:1	

C:M	 1:1	

C:M	 1:2	

C:M	 1:4	

C:M	 1:8	

C:M	 1:16	

C:M	 1:32	

Figure 3: DGEMM with 1:1 read/write ratio at
varying latencies and varying cache-to-memory ra-
tios

0.1	

1	

10	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

STREAM	

Figure 4: STREAM at varying latencies

updates. This would allow large neural network weight ma-
trices to reside in the SCM, with small windows – up to
twice the cache capacity – being successively updated in an
iteration step.

In contrast, the STREAM benchmark (Figure 4) repre-
sents workloads with large, uniform data streams that are
not suitable for block decomposition. The performance curve
shows a direct linear correlation between memory latency
and runtime, indicating that using SCM with higher latency
results in slower application execution. The other bench-
marks show a similar linear correlation. The kmer key/value
benchmark profile is shown in Figure 5 for two indexing
methods, a btree, suitable for block access, and hash table, a
high-performance in-memory index implementation. Kmer
also shows linear slowdown with increasing latency. With
these latency sensitive workloads, it is desirable to run mul-
tiple data parallel threads, transforming the computation to
be throughput driven. Concurrent worker threads utilizing
available memory bandwidth could in aggregate compensate
for longer SCM latency, and thus take advantage of SCM
capacity (see [7] for a detailed study of throughput driven
applications on the Hybrid Memory Cube).

3.2 Read/Write Asymmetry
Next we consider the effect of read/write ratio on per-

formance. Figure 6 and Figure 7 show runtime at vary-
ing latencies for four read/write ratios for the RandomAc-
cess and STREAM benchmarks. The graphs show that an
asymmetric read-write ratio up to 1:4 has little impact on
performance, indicating that cache can mask the latency of
the write. This result holds for opposite ends of the spec-

0.01	

0.1	

1	

10	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

Kmer,	 C:M	 1:169+,	 R:W	 1:1	

btree	

hashmap	

Figure 5: Kmer benchmark at varying latencies, two
index schemes

0.1	

1	

10	

100	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

RandomAccess	 C:M	 1:1024	

R:W	 1:1	

R:W	 1:2	

R:W	 1:4	

R:W	 1:8	

Figure 6: Random Access at varying latencies and
r/w ratios

trum, from completely random access to sequential streams.
Since both benchmarks update data in-place in the cache,
the read/write ratio is not a factor in performance until 1:8.
This result indicates that even without a write buffer in the
SCM subsystem, CPU cache can hide long write latency in
the presence of write-heavy workloads. Other benchmarks
(BFS, ImageDiff, PageRank, SpMV) show no change in per-
formance even at a 1:8 ratio. These benchmarks are read-
dominated, so that the increased write latency does not have
measurable effect.

3.3 Application-specific cache using Data Re-
arrangement Engine

The final set of experiments incorporate an application-

0.1	

1	

10	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

STREAM	

R:W	 1:1	

R:W	 1:2	

R:W	 1:4	

R:W	 1:8	

Figure 7: STREAM at varying latencies and r/w
ratios

0.1	

1	

10	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

RandomAccess	 C:M	 1:1024,	 R:W	 1:1	

CPU	 CPU+DRE	

Figure 8: RandomAccess using custom scratchpad
at varying latencies ratio

1	

10	

100	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

SpMV	

CPU	

CPU+DRE	
1.46x	

1.70x	

1.72x	

Figure 9: SparseMatVec using custom scratchpad at
varying latencies ratio

specific cache, the Data Rearrangement Engine (DRE)[8] in
the memory. The DRE is invoked by explicit application
command to do a strided DMA or gather/scatter operation
between memory and in-memory scratchpad. Figures 8 and
9 show a substantial performance improvement by using a
DRE. In the Figures, “CPU” uses the existing CPU cache
only. “CPU+DRE”uses an in-memory Data Rearrangement
Engine configured to load an SRAM scratchpad with se-
lected bytes using strided DMA. The actual computation
is still performed in the CPU. In these algorithm variants,
the CPU issues a command to the DRE to gather or scat-
ter a block of data to/from the in-memory scratchpad, then
waits for DRE completion before advancing to the next step
of the algorithm. Even with this serialization, there is sig-
nificant performance improvement by using the DRE. The
performance improvement is due to the memory model of
16 parallel channels and narrow access width, both of which
the DRE can exploit on behalf of the CPU thread.

Figure 10 compares performance of three versions of the
ImageDiff benchmark. In addition to“CPU”and“CPU+DRE”
which operate as described above, a third version“CPU+DRE
w/overlap” overlaps CPU and DRE execution, allowing the
CPU to compute image difference on one block while the
DRE assembles the next. At latency up to 800 ns, the over-
lap results in additional performance improvement beyond
“CPU+DRE.” At the highest latencies, the overlap benefit
is overshadowed by the high access latency.

4. DISCUSSION
To summarize the key findings:

0.001	

0.01	

0.1	

1	

10	 100	 1000	 10000	

Ru
n$

m
e	
se
c	

Latency	 ns	

ImageDiff	 C:M	 1:1954,	 R:W	 1:1	

CPU	 CPU+DRE	 CPU+DRE	 w/overlap	

Figure 10: Image differencing of reduced resolution
imagery using custom scratchpad at varying laten-
cies ratio

• Caches can do well at hiding latency of storage class
memory as long as the working data set size is within
2X of the cache size (Figure 3).

• Applications that have an unbounded dataset size not
suitable for cache-friendly blocking slow down linearly
with latency (Figures 4, 5). For these applications,
a throughput driven approach is desirable to hide la-
tency with concurrent data parallel memory accesses.

• Caches can hide write latencies that are longer than
read latencies up to a factor of about 4 for applica-
tions with significant write access (Figures 6 and 7)
and higher latency for read-dominated workloads.

• A specialized cache (Figures 8, 9, 10) can improve per-
formance significantly at all latencies. Overlapping
CPU with the DRE cache gives additional performance
improvement up to 800 ns latency.

Many research issues remain to be explored. This study
has used a simple cache hierarchy of SRAM caches and SCM
and studied benchmarks that either can exploit the proces-
sor cache (DGEMM) or have data sets and access patterns
that are unlikely to benefit from cache. However, perfor-
mance of the application benchmarks using a more com-
plex hierarchy that includes DRAM cache/scratchpads [11]
should also be investigated.

This study has used a simple abstract model of the mem-
ory system in terms of latency, access width, and concur-
rency. More detailed models, including those specific to a
particular SCM technology, can be assessed through an iter-
ative process when evaluation hardware or a low level cycle
accurate SCM device simulator is available. First, traces are
captured by the emulator for a benchmark run using esti-
mates for the latency. Then, traces are replayed on hard-
ware or a detailed simulator that is instrumented to acquire
latency statistics. The average latency obtained from the re-
played traces is then entered into the emulator for another
run. These steps are repeated a few times until the average
latency from trace replay converges to a stable number. Af-
ter convergence, benchmarks run on the emulator will report
more accurate run times for the traced region. An example
of this iterative process is given in [7] with a Hybrid Memory
Cube board instrumented to report latency dynamically as
the trace is replayed.

This study has focused on speed performance. However,
energy is as important a factor. SCM power models must

be included in the analysis to understand the energy usage
for SCM at the workload level and determine whether pro-
jections of SCM energy benefit are borne out when used as
main memory.

The FPGA emulator has allowed us to measure perfor-
mance very accurately and run a large set of studies quickly
compared to software simulation. However, the emulator has
a fixed framework of CPU and cache hierarchy, and more
comprehensive studies with other processor/cache models
will also be valuable.

5. ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Lab-
oratory under contract No. DE-AC52-07NA27344. This
work was supported by Lawrence Livermore National Lab-
oratory LDRD project 16-ERD-005. LLNL-CONF-687015

6. REFERENCES
[1] 3D XPoint. https://en.wikipedia.org/wiki/3D XPoint.

[2] Emulator Software.
https://bitbucket.org/PerMA/emulator st.

[3] Graph500. www.graph500.org.

[4] HPC Challenge Benchmark.
http://icl.cs.utk.edu/hpcc/.

[5] H. Gahvari, M. Hoemmen, J. Demmel, and K. Yelick.
Benchmarking sparse matrix-vector multiply in five
minutes. In SPEC Benchmark Workshop, January
2007.

[6] M. Gokhale, S. Lloyd, and C. Hajas. Near memory
data structure rearrangement. In Proceedings of the
2015 International Symposium on Memory Systems,
MEMSYS ’15, pages 283–290, Washington DC, USA,
Oct 2015. ACM.

[7] M. Gokhale, S. Lloyd, and C. Macaraeg. Hybrid
Memory Cube performance characterization on
data-centric workloads. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and
Algorithms, IA3 ’15, pages 7:1–7:8, Austin, TX, USA,
Nov 2015. ACM.

[8] S. Lloyd and M. Gokhale. In-memory data
rearrangement for irregular, data-intensive computing.
IEEE Computer, 48(8):18–25, Aug 2015.

[9] J. D. McCalpin. STREAM: sustainable memory
bandwidth in high performance computers. Technical
report, University of Virginia, Charlottesville,
Virginia, 1991-2007. A continually updated technical
report.

[10] T. Pawlowski. Vision of processor-memory systems
(keynote presentation). International Symposium on
Memory Systems, October 2015.

[11] C. Su, D. Roberts, E. A. León, K. W. Cameron, B. R.
de Supinski, G. H. Loh, and D. S. Nikolopoulos.
HpMC: an energy-aware management system of
multi-level memory architectures. In Proceedings of
the 2015 International Symposium on Memory
Systems, MEMSYS 2015, Washington DC, USA,
October 5-8, pages 167–178, 2015.

